

2	(i)	$\begin{aligned} & \mathrm{f}(x)=\begin{array}{c} x \cdot 2(x-2)-(x-2)^{2} \\ x^{2} \end{array} \\ & =\begin{array}{c} 2 x^{2}-4 x-x^{2}+4 x-4 \\ x^{2} \\ =\left(x^{2}-4\right) / x^{2}=1-4 / x^{2} * \end{array} \end{aligned}$	M1 A1 A1	quotient (or product) rule, condone sign errors only correct exp, condone missing brackets here simplified correctly NB AG	e.g. $\frac{ \pm x .2(x-2) \pm(x-2)^{2}}{x^{2}}$ PR: $(x-2)^{2} \cdot\left(-x^{-2}\right)+(1 / x) \cdot 2(x-2)$ with correct use of brackets
		$\begin{aligned} & \text { or } \mathrm{f}(x)=\left(x^{2}-4 x+4\right) / x \\ & \quad=x-4+4 / x \\ & \Rightarrow \mathrm{f}^{\prime}(x)=1-4 / x^{2} * \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$	expanding bracket and dividing each term by x correctly not from wrong working NB AG	must be 3 terms: $\left(x^{2}-4\right) / x$ is M0 e.g. $x-4+2 / x$ is M1A0
		$\begin{aligned} & \mathrm{f}^{\prime \prime}(x)=8 / x^{3} \\ & \mathrm{f}^{\prime}(x)=0 \text { when } x^{2}=4, x= \pm 2 \\ & \text { so at } \mathrm{Q}, x=-2, y=-8 . \\ & \mathrm{f}^{\prime \prime}(-2)[=-1]<0 \text { so maximum } \end{aligned}$	B1 M1 A1 B1dep [7]	$\begin{aligned} & \text { o.e. e.g. } 8 x^{-3} \text { or } 8 x / x^{4} \\ & x= \pm 2 \text { found from } 1-4 / x^{2}=0 \\ & (-2,-8) \end{aligned}$ dep first B1. Can omit -1 , but if shown must be correct. Must state <0 or negative.	allow for $x=-2$ unsupported must use $2^{\text {nd }}$ derivative test

Question		Answer$\begin{aligned} & \mathrm{f}(1)=(-1)^{2} / 1=1 \\ & \mathrm{f}(4)=(2)^{2} / 4=1 \end{aligned}$	MarksB1	Guidance	
2	(ii)			verifying $f(1)=1$ and $f(4)=1$	$\begin{aligned} & \text { or }(x-2)^{2}=x \Rightarrow x^{2}-5 x+4=0 \\ & \Rightarrow(x-1)(x-4)=0, x=1,4 \end{aligned}$
		$\begin{aligned} & \int_{1}^{4}(x-2)^{2} \mathrm{~d} x=\int_{1}^{4}(x-4+4 / x) \mathrm{d} x \\ & =\left[x^{2} / 2-4 x+4 \ln x\right]_{1}^{4} \\ & =(8-16+4 \ln 4)-(1 / 2-4+4 \ln 1) \\ & =4 \ln 4-41 / 2 \end{aligned}$ Area enclosed $=$ rectangle - curve $=3 \times 1-(4 \ln 4-41 / 2)=71 / 2-4 \ln 4$	M1 A1 A1cao M1 Alcao	expanding bracket and dividing each term by x 3 terms: $x-4 / x$ is M0 $x^{2} / 2-4 x+4 \ln x$ soi o.e. but must combine numerical terms and evaluate $\ln 1$ - mark final ans	$\begin{aligned} & \text { if } u=x-2 \\ & \int \frac{u^{2}}{u+2} \mathrm{~d} u=\int\left(u-2+\frac{4}{u+2}\right) \mathrm{d} u \\ & u^{2} / 2-2 u+4 \ln (u+2) \end{aligned}$
		or $\begin{aligned} & \text { Area }=\int_{1}^{4}\left[1-\begin{array}{c} (x-2)^{2} \\ x \end{array}\right] \mathrm{d} x \\ & =\int_{1}^{4}(5-x-4 / x) \mathrm{d} x \\ & =\left[5 x-x^{2} / 2-4 \ln x\right]_{1}^{4} \\ & =20-8-4 \ln 4-(5-1 / 2-4 \ln 1) \\ & =71 / 2-4 \ln 4 \end{aligned}$	M1 M1 A1 A1 A1cao [6]	no need to have limits expanding bracket and dividing each term by x $\begin{aligned} & 5-x-4 / x \\ & 5 x-x^{2} / 2-4 \ln x \end{aligned}$ o.e. but must combine numerical terms and evaluate $\ln 1$ - mark final ans	must be 3 terms in $(x-2)^{2}$ expansion
	(iii)	$\begin{aligned} & {[\mathrm{g}(x)=] \mathrm{f}(x+1)-1} \\ & =\begin{array}{c} (x+1-2)^{2}-1 \\ x+1 \end{array} \\ & =\frac{x^{2}-2 x+1-x-1}{x+1}=\begin{array}{c} x^{2}-3 x \\ x+1 \end{array} * \end{aligned}$	M1 A1 A1 [3]	soi [may not be stated] correctly simplified - not from wrong working NB AG	

Question		Answer	Marks	Guidance		
$\mathbf{2}$	(iv)		Area is the same as that found in part (ii)	M1	award M1 for \pm ans to 8(ii) (unless zero)	
			$4 \ln 4-71 / 2$	A1cao	need not justify the change of sign	

Question		Answer		Guidance	
3		$\int_{0}^{\pi / 6}(1-\sin 3 x) \mathrm{d} x=\left[x+\frac{1}{3} \cos 3 x\right]_{0}^{\pi / 6}$ $=\pi / 6-1 / 3$	$\begin{array}{\|c\|} \hline \text { M1 } \\ \text { A1 } \\ \text { A1cao } \\ {[3]} \end{array}$	$\begin{aligned} & \pm 1 / 3 \cos 3 x \text { seen or } \int \frac{1}{3}(1-\sin u)[\mathrm{d} u] \\ & {\left[x+\frac{1}{3} \cos 3 x\right] \text { or }\left[\frac{1}{3}(u+\cos u)\right]} \end{aligned}$ o.e., must be exact	i.e. condone sign error condone ' +c ' isw after correct answer seen

4	(i)		$\begin{array}{ll} & x \mathrm{e}^{-2 x}=m x \\ \Rightarrow & \mathrm{e}^{-2 x}=m \\ \Rightarrow \quad & -2 x=\ln m \\ \Rightarrow & x=-1 / 2 \ln m * \\ \text { or } & \\ \text { If } x=-1 / 2 \ln m, y=-1 / 2 \ln m \times \mathrm{e}^{\ln m} \\ & =-1 / 2 \ln m \times m \end{array}$ $\text { so } \mathrm{P} \text { lies on } y=m x$	M1 M1 A1 M1 A1 A1 [3]	may be implied from $2^{\text {nd }}$ line dividing by x, or subtracting $\ln x$ NB AG substituting correctly	$\begin{aligned} & \text { o.e. e.g. }[\ln x]-2 x=\ln m+[\ln x] \\ & \quad \text { or factorising: } x\left(\mathrm{e}^{-2 x}-m\right)=0 \end{aligned}$
	(ii)		$\begin{aligned} & \text { let } u=x, u^{\prime}=1, v=\mathrm{e}^{-2 x}, v^{\prime}=-2 \mathrm{e}^{-2 x} \\ & \mathrm{~d} y / \mathrm{d} x=\mathrm{e}^{-2 x}-2 x \mathrm{e}^{-2 x} \\ & =\mathrm{e}^{-2\left(-\frac{1}{2} \ln m\right)}-2 \cdot\left(-\frac{1}{2} \ln m\right) \mathrm{e}^{-2\left(-\frac{1}{2} \ln m\right)} \\ & =\mathrm{e}^{\ln m}+\mathrm{e}^{\ln m} \ln m \quad[=m+m \ln m] \end{aligned}$	M1* A1 M1 dep A1cao [4]	product rule consistent with their derivs o.e. correct expression subst $x=-1 / 2 \ln m$ into their deriv dep M1* condone $\mathrm{e}^{\ln m}$ not simplified	but not $-2(-1 / 2 \ln m)$, but mark final ans

Question		Answer$\begin{aligned} & m+m \ln m=-m \\ & \Rightarrow \quad \ln m=-2 \\ & \Rightarrow \quad m=\mathrm{e}^{-2} * \\ & \text { or } \\ & y+1 / 2 m \ln m=m(1+\ln m)(x+1 / 2 \ln m) x=-\ln m, \\ & y=0 \Rightarrow 1 / 2 m \ln m=m(1+\ln m)(-1 / 2 \ln m) \\ & \Rightarrow 1+\ln m=-1, \ln m=-2, m=\mathrm{e}^{-2} \\ & \quad \text { At P, } x=1 \\ & \Rightarrow \quad y=\mathrm{e}^{-2} \end{aligned}$	Marks		ance
4	(iii)		M1 A1 B2 B1 B1 [4]	their gradient from (ii) $=-m$ NB AG for fully correct methods finding x intercept of equation of tangent and equating to $-\ln m$ isw approximations	not $\mathrm{e}^{-2} \times 1$
	(iv)	$\begin{aligned} & \text { Area under curve }=\int_{0}^{1} x \mathrm{e}^{-2 x} \mathrm{~d} x \\ & \\ & u=x, u^{\prime}=1, v^{\prime}=\mathrm{e}^{-2 x}, v=-1 / 2 \mathrm{e}^{-2 x} \\ & =\left[-\frac{1}{2} x \mathrm{e}^{-2 x}\right]_{0}^{1}+\int_{0}^{1} \frac{1}{2} \mathrm{e}^{-2 x} \mathrm{~d} x \\ & =\left[-\frac{1}{2} x \mathrm{e}^{-2 x}-\frac{1}{4} \mathrm{e}^{-2 x}\right]_{0}^{1} \\ & =\left(-1 / 2 \mathrm{e}^{-2}-1 / 4 \mathrm{e}^{-2}\right)-\left(0-1 / 4 \mathrm{e}^{0}\right) \\ & {\left[=1 / 4-3 / 4 \mathrm{e}^{-2}\right]} \\ & \text { Area of triangle }=1 / 2 \text { base } \times \text { height } \\ & \quad=1 / 2 \times 1 \times \mathrm{e}^{-2} \\ & \text { So area enclosed }=1 / 4-5 \mathrm{e}^{-2} / 4 \end{aligned}$	M1 A1ft A1 A1 M1 A1 A1 cao [7]	parts, condone $v=k \mathrm{e}^{-2 x}$, provided it is used consistently in their parts formula ft their v $-\frac{1}{2} x \mathrm{e}^{-2 x}-\frac{1}{4} \mathrm{e}^{-2 x} \text { o.e }$ correct expression ft their $1, \mathrm{e}^{-2} \quad$ or $\left[\mathrm{e}^{-2} x^{2} / 2\right]$ o.e. must be exact, two terms only	ignore limits until $3^{\text {rd }} \mathrm{A} 1$ need not be simplified o.e. using isosceles triangle M1 may be implied from $0.067 \ldots$ isw

	uestion	Answer	Marks	Gui
5		$\begin{aligned} & \int_{0}^{\pi / 2} \frac{\sin 2 x}{3+\cos 2 x} \mathrm{~d} x=\left[-\frac{1}{2} \ln (3+\cos 2 x)\right]_{0}^{\pi / 2} \\ & \text { or } u=3+\cos 2 x, \mathrm{~d} u=-2 \sin 2 x \mathrm{~d} x \\ & \int_{0}^{\pi / 2} \frac{\sin 2 x}{3+\cos 2 x} \mathrm{~d} x=\int_{4}^{2}-\frac{1}{2 u} \mathrm{~d} u \\ & =\left[-\frac{1}{2} \ln u\right]_{4}^{2} \\ & =-1 / 2 \ln 2+1 / 2 \ln 4 \\ & \quad=1 / 2 \ln (4 / 2) \\ & \quad=1 / 2 \ln 2 \end{aligned}$	M1 A2 M1 A1 A1 A1 A1 [5]	$\begin{aligned} & k \ln (3+\cos 2 x) \\ & -1 / 2 \ln (3+\cos 2 x) \end{aligned}$ o.e. e.g. $\mathrm{d} u / \mathrm{d} x=-2 \sin 2 x$ or if $v=\cos 2 x, \mathrm{~d} v=-2 \sin 2 x \mathrm{~d} x$ o.e. condone $2 \sin 2 x \mathrm{~d} x$ $\int-\frac{1}{2 u} \mathrm{~d} u$, or if $v=\cos 2 x, \int-\frac{1}{2(3+v)} \mathrm{d} v$ $-1 / 2 \ln u] \quad$ or $[-1 / 2 \ln (3+v)]$ ignore incorrect limits from correct working o.e. e.g. $-1 / 2 \ln (3+\cos (2 . \pi / 2))+1 / 2 \ln (3+\cos (2.0))$ o.e. required step for final A1, must have evaluated to 4 and 2 at this stage NB AG

