1	let $u = 2x - 1$, $du = 2 dx$ $\int \sqrt[3]{2x - 1} dx = \int \frac{1}{2} u^{1} du$ $= \frac{3}{8} u^{4} + c$ $= \frac{3}{8} (2x - 1)^{4} + c$	M1 M1 M1 A1cao	substituting $u = 2x - 1$ in integral $\times \frac{1}{2}$ o.e. integral of $u^{1/3} = \frac{u^{4/3}}{(4/3)}$ (oe) soi o.e., but must have + c and single fraction mark final answer	i.e. $u^{1/3}$ or $\sqrt[3]{u}$ seen in integral condone no du , or dx instead of du not $x^{1/3}$ so $\frac{3}{4}(2x-1)^3 + c$ is M1M0M1A0
	or $\int \sqrt[3]{2x-1} dx = \frac{1}{2} \times (2x-1)^{4/3} \div \frac{4}{3}$ $= \frac{3}{8}(2x-1)^{\frac{4}{3}} + c$	M1 M1 M1 A1cao [4]	$(2x - 1)^{4/3} \text{ seen}$ ÷ 4/3 (oe) soi × 1/2 o.e., but must have + c and single fraction mark final ans	e.g. correct power of $(2x - 1)$ e.g. ³ / ₄ $(2x - 1)^{4/3}$ seen so $\frac{3}{8}(2x-1)^{\frac{4}{3}}$ is M1M1M1A0

_ _ _ _ _

 $\overline{}$

2	(i)	$f'(x) = \frac{x \cdot 2(x-2) - (x-2)^2}{x^2}$	M1	quotient (or product) rule, condone sign errors only	e.g. $\frac{\pm x.2(x-2)\pm(x-2)^2}{x^2}$
		~	A1	correct exp, condone missing brackets here	PR: $(x - 2)^2 \cdot (-x^{-2}) + (1/x) \cdot 2(x - 2)$
		$=\frac{2x^2-4x-x^2+4x-4}{2}$			
		$x = (x^2 - 4)/x^2 = 1 - 4/x^2 *$	A1	simplified correctly NB AG	with correct use of brackets
		or $f(x) = (x^2 - 4x + 4)/x$			
		= x - 4 + 4/x	M1	expanding bracket and dividing each term by x	must be 3 terms: $(x^2 - 4)/x$ is M0
			A1	correctly	e.g. $x - 4 + 2/x$ is M1A0
		\Rightarrow f'(x) = 1 -4/x ² *	A1	not from wrong working NB AG	
		$f''(x) = 8 / x^3$	B1	o.e. e.g. $8 x^{-3}$ or $8x/x^4$	
		$f'(x) = 0$ when $x^2 = 4$, $x = \pm 2$	M1	$x = \pm 2$ found from $1 - 4/x^2 = 0$	allow for $x = -2$ unsupported
		so at Q, $x = -2$, $y = -8$.	A1	(-2, -8)	
		f "(-2) [= -1] < 0 so maximum	B1dep [7]	dep first B1. Can omit –1, but if shown must be correct. Must state < 0 or negative.	must use 2 nd derivative test

(Questic	on	Answer	Marks	Guidance		
2	(ii)		$f(1) = (-1)^2 / 1 = 1$			or $(x-2)^2 = x \Longrightarrow x^2 - 5x + 4 = 0$	
			$f(4) = (2)^2 / 4 = 1$	B1	verifying $f(1) = 1$ and $f(4) = 1$	$\Rightarrow (x-1)(x-4) = 0, x = 1, 4$	
			$\int_{1}^{4} \frac{(x-2)^{2}}{x} dx = \int_{1}^{4} (x-4+4/x) dx$	M1	expanding bracket and dividing each term by x 3 terms: $x - 4/x$ is M0	if $u = x - 2$ $\int \frac{u^2}{u+2} du = \int (u-2+\frac{4}{u+2}) du$	
			$= \left[x^2 / 2 - 4x + 4 \ln x \right]_1^4$	A1	$\frac{x^2}{2} - 4x + 4\ln x$	$u^2/2 - 2u + 4 \ln(u + 2)$	
			$= (8 - 16 + 4\ln 4) - (\frac{1}{2} - 4 + 4\ln 1)$				
			$=4\ln 4 - 4\frac{1}{2}$	A1cao			
			Area enclosed = rectangle $-$ curve	M1	soi		
			$= 3 \times 1 - (4\ln 4 - 4\frac{1}{2}) = 7\frac{1}{2} - 4\ln 4$	Alcao	o.e. but must combine numerical terms and evaluate ln 1 – mark final ans		
			or				
			Area = $\int_{1}^{4} [1 - \frac{(x-2)^2}{x}] dx$	M1	no need to have limits		
			$\int_{-\infty}^{4}$	M1	expanding bracket and dividing each term by x	must be 3 terms in $(x-2)^2$	
			$=\int_{1}^{1}(5-x-4/x)dx$	Al	5 - x - 4/x	expansion	
			$= \left[5x - x^2 / 2 - 4 \ln x \right]_1^4$	A1	$5x - x^2/2 - 4 \ln x$		
			$= 20 - 8 - 4\ln 4 - (5 - \frac{1}{2} - 4\ln 1)$ = 7 ¹ / ₂ - 4ln4	A1cao [6]	o.e. but must combine numerical terms and evaluate ln 1 – mark final ans		
	(iii)		[g(x) =] f(x + 1) - 1	M1	soi [may not be stated]		
			$=\frac{(x+1-2)^2}{x+1}-1$	A1			
			$=\frac{x^2-2x+1-x-1}{x+1}=\frac{x^2-3x}{x+1} *$	A1 [3]	correctly simplified – not from wrong working NB AG		

PhysicsAndMathsTutor.com

(Question		Answer	Marks	Guidance	
2	(iv)		Area is the same as that found in part (ii)	M1	award M1 for \pm ans to 8(ii) (unless zero)	
			$4\ln 4 - 7\frac{1}{2}$	A1cao [2]	need not justify the change of sign	

Question		n	Answer	Marks	Guidance		
3			$\int_{0}^{\pi/6} (1 - \sin 3x) \mathrm{d}x = \left[x + \frac{1}{3} \cos 3x \right]_{0}^{\pi/6}$	M1	$\pm 1/3 \cos 3x$ seen or $\int \frac{1}{3}(1-\sin u)[du]$	i.e. condone sign error	
				A1	$\left[x + \frac{1}{3}\cos 3x\right] \operatorname{or}\left[\frac{1}{3}(u + \cos u)\right]$	condone '+ c'	
			$=\pi/6-1/3$	Alcao	o.e., must be exact	isw after correct answer seen	
				[3]			

4	(i)	$xe^{-2x} = mx$	M1	may be implied from 2 nd line	
		\Rightarrow e ^{-2x} = m	M1	dividing by <i>x</i> , or subtracting ln <i>x</i>	o.e. e.g. $[\ln x] - 2x = \ln m + [\ln x]$
		\Rightarrow $-2x = \ln m$			or factorising: $x(e^{-2x} - m) = 0$
		\Rightarrow $x = -\frac{1}{2} \ln m *$	A1	NB AG	
		or			
		If $x = -\frac{1}{2} \ln m$, $y = -\frac{1}{2} \ln m \times e^{\ln m}$	M1	substituting correctly	
		$= -\frac{1}{2} \ln m \times m$	A1		
		so P lies on $y = mx$	A1		
			[3]		
	(ii)	let $u = x$, $u' = 1$, $v = e^{-2x}$, $v' = -2e^{-2x}$	M1*	product rule consistent with their derivs	
		$dy/dx = e^{-2x} - 2xe^{-2x}$	A1	o.e. correct expression	
		$= e^{-2(-\frac{1}{2}\ln m)} - 2.(-\frac{1}{2}\ln m)e^{-2(-\frac{1}{2}\ln m)}$	M1dep	subst $x = -\frac{1}{2} \ln m$ into their deriv dep M1*	
		$= e^{\ln m} + e^{\ln m} \ln m [= m + m \ln m]$	Alcao	condone e ^{lnm} not simplified	but not $-2(-\frac{1}{2} \ln m)$, but mark final ans
			[4]		

	Questic	on	Answer	Marks	Guid	ance
4	(iii)		$m + m \ln m = -m$	M1	their gradient from (ii) $= -m$	
			\Rightarrow ln $m = -2$			
			\Rightarrow $m = e^{-2} *$	A1	NB AG	
			or			
			$y + \frac{1}{2}m\ln m = m(1 + \ln m)(x + \frac{1}{2}\ln m)x = -\ln m,$	B2	for fully correct methods finding <i>x</i> -	
			$y=0 \Rightarrow \frac{1}{2m\ln m} = m(1+\ln m)(-\frac{1}{2}\ln m)$		intercept of equation of tangent and equating to $-\ln m$	
			\Rightarrow 1 + ln m = -1, ln m = -2, m = e ⁻²	DI		
			At P, $x = 1$	BI		_2 _
			\Rightarrow $y = e^{-2}$	B1	isw approximations	not e $^{2} \times 1$
				[4]		
	(iv)		Area under curve = $\int_0^1 x e^{-2x} dx$			
			$u = x, u' = 1, v' = e^{-2x}, v = -\frac{1}{2} e^{-2x}$	M1	parts, condone $v = k e^{-2x}$, provided it is used consistently in their parts formula	ignore limits until 3 rd A1
			$= \left[-\frac{1}{2} x e^{-2x} \right]_{0}^{1} + \int_{0}^{1} \frac{1}{2} e^{-2x} dx$	A1ft	ft their v	
			$= \left[-\frac{1}{2} x e^{-2x} - \frac{1}{4} e^{-2x} \right]_{0}^{1}$	A1	$-\frac{1}{2}xe^{-2x}-\frac{1}{4}e^{-2x}$ o.e	
			$= (-\frac{1}{2}e^{-2} - \frac{1}{4}e^{-2}) - (0 - \frac{1}{4}e^{0})$	A1	correct expression	need not be simplified
			$\begin{bmatrix} = \frac{1}{4} - \frac{1}{4} e \end{bmatrix}$	N/1	(2, 1) = 1 = -2	
			Area of triangle = $\frac{1}{2}$ base × height	MI	It their 1, e^{-1} or $[e^{-1}x^{-1}/2]$	o.e. using isosceles triangle
			$= \frac{1}{2} \times 1 \times e^{-2}$	AI		M1 may be implied from 0.06/
			So area enclosed = $\frac{1}{4} - 5e^{-\frac{2}{4}}$	A1cao [7]	o.e. must be exact, two terms only	1SW

Question	Answer	Marks	Gui
5	$\int_{-\pi/2}^{\pi/2} \sin 2x + \int_{-\pi/2}^{\pi/2} 1 + (2 + \pi/2) = \frac{\pi}{2}$	M1	$k\ln(3+\cos 2x)$
	$\int_{0}^{1} \frac{1}{3 + \cos 2x} dx = \left[-\frac{1}{2} \ln(3 + \cos 2x) \right]_{0}^{1}$	A2	$-\frac{1}{2}\ln(3+\cos 2x)$
	$or \ u = 3 + \cos 2x, \ du = -2\sin 2x \ dx$	M1	o.e. e.g. $du/dx = -2\sin 2x$ or if $v = \cos 2x$, $dv = -2\sin 2x dx$ o.e. condone $2\sin 2x dx$
	$\int_{0}^{\pi/2} \frac{\sin 2x}{3 + \cos 2x} dx = \int_{4}^{2} -\frac{1}{2u} du$	A1	$\int -\frac{1}{2u} du$, or if $v = \cos 2x$, $\int -\frac{1}{2(3+v)} dv$
	$=\left[-\frac{1}{2}\ln u\right]_{4}^{2}$	A1	$-\frac{1}{2}\ln u$] or $\left[-\frac{1}{2}\ln(3+v)\right]$ ignore incorrect limits
	$= -\frac{1}{2} \ln 2 + \frac{1}{2} \ln 4$	A1	from correct working o.e. e.g. $-\frac{1}{2}\ln(3+\cos(2.\pi/2)) + \frac{1}{2}\ln(3+\cos(2.0))$
	$= \frac{1}{2} \ln (4/2)$		o.e. required step for final A1, must have evaluated to 4 and 2 at this stage
	$= \frac{1}{2} \ln 2 *$	A1	NB AG
		[5]	